2,004 research outputs found

    Time-optimal Unitary Operations in Ising Chains II: Unequal Couplings and Fixed Fidelity

    Full text link
    We analytically determine the minimal time and the optimal control laws required for the realization, up to an assigned fidelity and with a fixed energy available, of entangling quantum gates (CNOT\mathrm{CNOT}) between indirectly coupled qubits of a trilinear Ising chain. The control is coherent and open loop, and it is represented by a local and continuous magnetic field acting on the intermediate qubit. The time cost of this local quantum operation is not restricted to be zero. When the matching with the target gate is perfect (fidelity equal to one) we provide exact solutions for the case of equal Ising coupling. For the more general case when some error is tolerated (fidelity smaller than one) we give perturbative solutions for unequal couplings. Comparison with previous numerical solutions for the minimal time to generate the same gates with the same Ising Hamiltonian but with instantaneous local controls shows that the latter are not time-optimal.Comment: 11 pages, no figure

    Testing the Standard Model by precision measurement of the weak charges of quarks

    Get PDF
    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low energy. The precision of this new result, combined with earlier atomic parity-violation measurements, places tight constraints on the size of possible contributions from physics beyond the Standard Model. Consequently, this result improves the lower-bound on the scale of relevant new physics to ~1 TeV.Comment: 4 pages, 3 figures; v2: further details on extraction of electroweak parameters, new figur

    A new Megatheriinae skull (Xenarthra, Tardigrada) from the pliocene of northern venezuela – Implications for a giant sloth dispersal to central and North America

    Get PDF
    A skull of a ground sloth from the Pliocene San Gregorio Formation documents a northern neotropical occurrence of a megatheriine that addresses issues on intraspecific variation and biogeography. The new specimen is broadly similar in size and morphology to that of Proeremotherium eljebe from the underlying Codore Formation in the Urumaco Sequence, differing in several features such as a longer basicranial area and a more posteriorly projected basioccipital between the condyles. The living sloths species of Bradypus and Choloepus do not have unequivocal anatomical features that indicate sexual dimorphism. Nevertheless, fossil sloths may have shown such dimorphism, and speculations on this subject are part of the considerations that can be made when allocating fragmentary fossils (e.g., in the new skull the presence of a long sagittal crest could indicate a male individual and the absence of an extended crest in Proeremotherium eljebe a female one). We speculate that as early as the late middle Miocene, two main lines of Megatheriinae had clearly separated in two geographic areas, one in the rising Andean area and one at low latitudes on the lowlands of central and northern South America.Fil: Carlini, Alfredo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Departamento Científico de Paleontología de Vertebrados; ArgentinaFil: Brandoni, Diego. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; ArgentinaFil: Sánchez, Rodolfo. Museo Paleontológico de la Alcaldia de Urumaco; VenezuelaFil: Sánchez Villagra, Marcelo R.. Universitat Zurich; Suiz

    Square Root Actions, Metric Signature, and the Path-Integral of Quantum Gravity

    Get PDF
    We consider quantization of the Baierlein-Sharp-Wheeler form of the gravitational action, in which the lapse function is determined from the Hamiltonian constraint. This action has a square root form, analogous to the actions of the relativistic particle and Nambu string. We argue that path-integral quantization of the gravitational action should be based on a path integrand exp[iS]\exp[ \sqrt{i} S ] rather than the familiar Feynman expression exp[iS]\exp[ i S ], and that unitarity requires integration over manifolds of both Euclidean and Lorentzian signature. We discuss the relation of this path integral to our previous considerations regarding the problem of time, and extend our approach to include fermions.Comment: 32 pages, latex. The revision is a more general treatment of the regulator. Local constraints are now derived from a requirement of regulator independenc

    Extracting nucleon strange and anapole form factors from world data

    Get PDF
    The complete world set of parity violating electron scattering data up to Q^2~0.3 GeV^2 is analysed. We extract the current experimental determination of the strange electric and magnetic form factors of the proton, as well as the weak axial form factors of the proton and neutron, at Q^2 = 0.1 GeV^2. Within experimental uncertainties, we find that the strange form factors are consistent with zero, as are the anapole contributions to the axial form factors. Nevertheless, the correlation between the strange and anapole contributions suggest that there is only a small probability that these form factors all vanish simultaneously.Comment: 4 pages, 3 figs; v2: version to appear in PR

    Plant Ureases and Related Peptides: Understanding Their Entomotoxic Properties

    Get PDF
    Recently, ureases were included in the arsenal of plant defense proteins, alongside many other proteins with biotechnological potential such as insecticides. Isoforms of Canavalia ensiformis urease (canatoxin—CNTX and jack bean urease—JBURE-I) are toxic to insects of different orders. This toxicity is due in part to the release of a 10 kDa peptide from the native protein, by cathepsin-like enzymes present in the insect digestive tract. The entomotoxic peptide, Jaburetox-2Ec, exhibits potent insecticidal activity against several insects, including many resistant to the native ureases. JBURE-I and Jaburetox-2Ec cause major alterations of post-feeding physiological processes in insects, which contribute to, or can be the cause of, their entomotoxic effect. An overview of the current knowledge on plant urease processing and mechanisms of action in insects is presented in this review

    Time-optimal CNOT between indirectly coupled qubits in a linear Ising chain

    Full text link
    We give analytical solutions for the time-optimal synthesis of entangling gates between indirectly coupled qubits 1 and 3 in a linear spin chain of three qubits subject to an Ising Hamiltonian interaction with equal coupling JJ plus a local magnetic field acting on the intermediate qubit. The energy available is fixed, but we relax the standard assumption of instantaneous unitary operations acting on single qubits. The time required for performing an entangling gate which is equivalent, modulo local unitary operations, to the CNOT(1,3)\mathrm{CNOT}(1, 3) between the indirectly coupled qubits 1 and 3 is T=3/2J1T=\sqrt{3/2} J^{-1}, i.e. faster than a previous estimate based on a similar Hamiltonian and the assumption of local unitaries with zero time cost. Furthermore, performing a simple Walsh-Hadamard rotation in the Hlibert space of qubit 3 shows that the time-optimal synthesis of the CNOT±(1,3)\mathrm{CNOT}^{\pm}(1, 3) (which acts as the identity when the control qubit 1 is in the state 0\ket{0}, while if the control qubit is in the state 1\ket{1} the target qubit 3 is flipped as ±\ket{\pm}\rightarrow \ket{\mp}) also requires the same time TT.Comment: 9 pages; minor modification

    A convergent scheme for a non local Hamilton-Jacobi equation modelling dislocation dynamic

    Get PDF
    We study dislocation dynamics with a level set point of view. The model we present here looks at the zero level set of the solution of a non local Hamilton Jacobi equation, as a dislocation in a plane of a crystal. The front has a normal speed, depending on the solution itself. We prove existence and uniqueness for short time in the set of continuous viscosity solutions. We also present a first order finite difference scheme for the corresponding level set formulation of the model. The scheme is based on monotone numerical Hamiltonian, proposed by Osher and Sethian. The non local character of the problem makesit not monotone. We obtain an explicit convergence rate of the approximate solution to the viscosity solution. We finally provide numerical simulations

    Jack bean (Canavalia ensiformis) urease induces eicosanoid-modulated hemocyte aggregation in the Chagas' disease vector Rhodnius prolixus

    Get PDF
    AbstractUreases are multifunctional proteins that display biological activities independently of their enzymatic function, such as induction of exocytosis and insecticidal effects. Rhodnius prolixus, a major vector of Chagas' disease, is a model for studies on the entomotoxicity of jack bean urease (JBU). We have previously shown that JBU induces the production of eicosanoids in isolated tissues of R. prolixus. In insects, the immune response comprises cellular and humoral reactions, and is centrally modulated by eicosanoids. Cyclooxygenase products signal immunity in insects, mainly cellular reactions, such as hemocyte aggregation. In searching for a link between JBU's toxic effects and immune reactions in insects, we have studied the effects of this toxin on R. prolixus hemocytes. JBU triggers aggregation of hemocytes after injection into the hemocoel and when applied to isolated cells. On in vitro assays, the eicosanoid synthesis inhibitors dexamethasone (phospholipase A2 indirect inhibitor) and indomethacin (cyclooxygenase inhibitor) counteracted JBU's effect, indicating that eicosanoids, more specifically cyclooxygenase products, are likely to mediate the aggregation response. Contrarily, the inhibitors esculetin and baicalein were inactive, suggesting that lipoxygenase products are not involved in JBU's effect. Extracellular calcium was also necessary for JBU's effect, in agreement to other cell models responsive to ureases. A progressive darkening of the medium of JBU-treated hemocytes was observed, suggestive of a humoral response. JBU was immunolocalized in the cultured cells upon treatment along with cytoskeleton damage. The highest concentration of JBU tested on cultured cells also led to nuclei aggregation of adherent hemocytes. This is the first time urease has been shown to affect insect hemocytes, contributing to our understanding of the entomotoxic mechanisms of action of this protein
    corecore